Hysteresis in Ferromagnetic Materials
We will investigate data collected by Sara Eisenhardt of the magnetisation curve of the ferromagnetic material , and determine if there's hysteresis.
Basics
- Importing libaries
- Reading the data
- Do initial processing, plot to verify.
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
from scipy.stats import norm
from IPython.display import display, Latex
import matplotlib.pyplot as plt
from matplotlib import animation, rc
rc('animation', html='jshtml')
# standard matplotlib settings
def plt_rcParams():
plt.rcParams['font.size'] = 10
plt.rcParams['axes.labelsize'] = 10
plt.rcParams['axes.titlesize'] = 12
plt.rcParams['axes.linewidth'] = 1
plt.rcParams['lines.linewidth'] = 1.5
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['xtick.major.size'] = 8
plt.rcParams['xtick.minor.size'] = 5
plt.rcParams['ytick.major.size'] = 8
plt.rcParams['ytick.minor.size'] = 5
plt.rcParams['legend.fontsize'] = 8
plt.rcParams['legend.fancybox'] = True
plt.rcParams['legend.frameon'] = True
plt.rcParams['legend.framealpha'] = 0
plt_rcParams()
headers = 'Time,DC Field 1,DC Field 2,Temperature 1,Temperature 2,Frequency 1,AC Field 1,RealPart 1a,ImagPart 1a,RealPart 1b,ImagPart 1b,Frequency 2,AC Field 2,RealPart 2a,ImagPart 2a,RealPart 2b,ImagPart 2b'.split(",")
B_col = headers[1] # T
U_col = headers[8] # V
U0 = 0.9305 * 10**(-6) # V
df_pos = pd.read_csv("2010_01_0013.dat",skiprows=14,names=headers,sep=" ")
df_neg = pd.read_csv("2010_01_0014.dat",skiprows=14,names=headers,sep=" ")
is shifted by above the x-axis, so we need to subtract to do a zero-point correction. We know from the assignment text that is proportional with , and since we don't care about the absolute value of , we choose to set the proportionality factor equal to .
B_pos = df_pos[B_col]
U_pos = df_pos[U_col]-U0
B_neg = df_neg[B_col]
U_neg = df_neg[U_col]-U0
M_pos = U_pos/B_pos
M_neg = U_neg/B_neg
We verify that the data is sensible by plotting it below.
plt.plot(B_pos, U_pos, label="Positve")
plt.plot(B_neg, U_neg, label="Negative")
plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
plt.title("Raw data (with zero point correction).")
plt.xlabel("$B$ [T]")
plt.ylabel("$U$ [V]")
plt.legend()
plt.show()
Next we want to plot the primary graph of the assignment to investigate possible hysterisis.
plt.plot(B_pos, M_pos, label="Positive")
plt.plot(B_neg, M_neg, label="Negative")
plt.xlim(-0.5,0.5)
plt.ylim(-1e-6,1e-6)
plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
plt.title("Magnetisation: Hysteresis plot no rebinning")
plt.xlabel("$B$ [T]")
plt.ylabel("$\propto M$ [V/T]")
plt.legend()
plt.show()
While the data in the plot above do appear to have some of characteristics of Hysteresis, we have a lot of noise, especially around . To reduce the amount of noise we see in the plot, we rebin the data.
Rebinning
For our rebin method, we use a fixed number of items per bin controlled by the desired number of bins and total number of items in the dataset. We simply discard any straggling datapoints that may arise from the number of bins not being evenly divisible with the total number of datapoints. We do this because it's easier and won't effect our analysis which is focused around the middle of the datasets - not the last datapoints. Moreover, we will at most discard only one bin's worth of datapoints.
def rebin(xs,n):
"""
Helper function to facilitate rebinning.
xs: Array to be rebinned
n : Number of bins.
"""
# I purposefully don't care about any straggling datapoints
# since they don't matter for the analysis anyway.
N=len(xs)
number_items_in_bin = int(N/n)
values = []
uncertainties = []
for i in range(n):
start_index = i*number_items_in_bin
stop_index = start_index+number_items_in_bin # eqv.to (i+1)*number_items_in_bin
subset = xs[start_index:stop_index]
values.append(np.mean(subset))
# using error in the mean sigma/sqrt(n)
uncertainties.append(np.std(subset,ddof=1)/np.sqrt(number_items_in_bin)) # (use n-1 to estimate variance)
return np.array(values), np.array(uncertainties)
def gen_bin_plot(N_bins, fmt=".", alpha=1, ax=None):
"""
A helper function to quickly generate binned plots.
"""
B_pos_bin, B_pos_bin_sigma = rebin(B_pos, N_bins)
M_pos_bin, M_pos_bin_sigma = rebin(M_pos, N_bins)
B_neg_bin, B_neg_bin_sigma = rebin(B_neg, N_bins)
M_neg_bin, M_neg_bin_sigma = rebin(M_neg, N_bins)
if not ax:
ax=plt.gca()
ax.errorbar(B_pos_bin, M_pos_bin,
xerr=B_pos_bin_sigma, yerr=M_pos_bin_sigma,
fmt=fmt, alpha=alpha, label="Positive")
ax.errorbar(B_neg_bin, M_neg_bin,
xerr=B_neg_bin_sigma, yerr=M_neg_bin_sigma,
fmt=fmt, alpha=alpha, label="Negative")
ax.set_title(f"Hysteresis plot rebinned with {N_bins} bins.")
ax.set_xlabel("$B$ [T]")
ax.set_ylabel("$\propto M$ [V/T]")
ax.set_xlim(-0.8,0.8)
ax.set_ylim(-5e-7,5e-7)
ax.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
ax.legend()
gen_bin_plot(200)
Determining optimal number of bins
def gen_anim(bins):
"""
A helper function to quickly generate animated bin plots.
"""
fig,ax = plt.subplots(1,1)
pos = ax.plot([],[],label="Positive")[0]
neg = ax.plot([],[],label="Negative")[0]
def update(i):
B_pos_bin, B_pos_bin_sigma = rebin(B_pos, bins[i])
M_pos_bin, M_pos_bin_sigma = rebin(M_pos, bins[i])
B_neg_bin, B_neg_bin_sigma = rebin(B_neg, bins[i])
M_neg_bin, M_neg_bin_sigma = rebin(M_neg, bins[i])
pos.set_data(B_pos_bin,M_pos_bin)
neg.set_data(B_neg_bin,M_neg_bin)
ax.set_title(f"Bins: {bins[i]}")
return [pos,neg]
ax.set_xlim(-1,1)
ax.set_ylim(-1e-6,1e-6)
plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
ax.set_xlabel("B [T]")
ax.set_ylabel("~M [V/T]")
ax.legend()
return animation.FuncAnimation(fig,
update,
frames=len(bins),
interval=150,
blit=True,
repeat_delay=0)
%%capture
bins = np.arange(10,3000,100)
anim = gen_anim(bins)
# Note uncommenting the line below will display the animation
# however it will take a not insignificant amount of time to run.
# Hence the comment.
anim
Looking at the animation above, we see that more than 500 bins is probably too much and introduces too much noise. So we would like to inspect the range from 10 to 500 in more detail.
%%capture
bins = np.arange(10,500,10)
anim = gen_anim(bins)
# Note uncommenting the line below will display the animation
# however it will take a not insignificant amount of time to run.
# Hence the comment.
anim
It appears that around bins strike a balance between having enough points to analysis, having low enough uncertainties, and the plots being visually comprehensible. For the remaining of this assignment, we will use bins.
bins_optim = 200
# generate binned dataset for future reference
B_pos_bin, B_pos_bin_sigma = rebin(B_pos, bins_optim)
M_pos_bin, M_pos_bin_sigma = rebin(M_pos, bins_optim)
B_neg_bin, B_neg_bin_sigma = rebin(B_neg, bins_optim)
M_neg_bin, M_neg_bin_sigma = rebin(M_neg, bins_optim)
# plot
gen_bin_plot(bins_optim)
plt.plot([-1,1],[0,0],"r--",linewidth=1, alpha=0.5, label="Axis Guide")
plt.plot([0,0],[-1,1],"r--",linewidth=1,alpha=0.5)
plt.legend()
<matplotlib.legend.Legend at 0x7fd104f1ead0>
Qualitatively, we see many of the same features as in figure 1 in the assignment. We see the two positve/negative curves forming two axal-mirrored s-curves which converge towards the same values for extreme values.
The qualitative analysis suggests that we do indeed see hysteresis.
Finding
- Find data points around
- Curvefit straight line
- Error propagate
In order to find , we assume local linearity, and fit a straight line through points around in case of the positive dataset. For the negative dataset, we have to fit points around a suspected found from previous fits since there's a erronious point which is not a part of the line around , and which increases our uncertainties.
We choose the optimal number of points as the number of points that gives us the fit with the lowest statistic with
for a model and a dataset , and being the number of points minus the number of parameters in the model in this case .
(Sometimes, the above equation shows up as Math Processing Error when displayed in a Jupyter notebook on ERDA. However, if you let a Latex renderer render the equation, it displays just fine)
indices_pos = np.argsort(np.abs(M_pos_bin)) # choose points closets to y=0.
# we can't do the same thing we did above where we took indices closets to y=0
# since we have a very imprecise point around (0,0) which ruins our fit.
# Therefore we have to find points closets to a Bc_guess in the x-axis.
Bc_neg_guess = -0.16039 # T, comes from previous fit
indices_neg = np.argsort(np.abs(B_neg_bin-Bc_neg_guess))
# model used to fit
straight_line = lambda x, a,b: a*x+b
model_params = 2
Ns = np.arange(3,bins_optim) # start with 3 in order to be sure we can get a non-infinity covariance matrix.
def find_chi2_n(pos):
"""
Helper function that finds the chi2 over reduced n
"""
chi2_n = []
if pos:
B = B_pos_bin
M = M_pos_bin
M_sigma = M_pos_bin_sigma
indices = indices_pos
else:
B = B_neg_bin
M = M_neg_bin
M_sigma = M_neg_bin_sigma
indices = indices_neg
for N in Ns:
popt, pcov = curve_fit(straight_line,
B[indices[:N]],
M[indices[:N]],
p0=[0,0],
sigma=M_sigma[indices[:N]])
# compute chi2/nr
r = M[indices[:N]] - straight_line(B[indices[:N]], *popt)
chi2 = np.sum((r / M_sigma[indices[:N]]) ** 2)
chi2_n.append(chi2/(N-model_params))
return chi2_n
chi2_n_pos = find_chi2_n(pos=True)
chi2_n_neg = find_chi2_n(pos=False)
fig, (ax1, ax2) = plt.subplots(1,2,sharex=True, sharey=True, figsize=(10,4))
ax1.plot(Ns,chi2_n_pos)
ax2.plot(Ns,chi2_n_neg)
ax1.set_yscale("log")
ax1.set_ylabel("$\chi^2/n_r$")
ax1.set_xlabel("N")
ax2.set_xlabel("N")
ax1.set_title("$\chi^2/n_r$ graph for $M_p$")
ax2.set_title("$\chi^2/n_r$ graph for $M_n$")
fig.suptitle("$\chi^2/n_r$ log-graphs")
plt.show()
# The optimal number of points is the number of points that gives us the smallest chi2/nr
number_of_points_for_best_fit_pos = np.argmin(chi2_n_pos)+3 # +3 since we start with 3 points
number_of_points_for_best_fit_neg = np.argmin(chi2_n_neg)+3
s_pos = f"Positive dataset: ${number_of_points_for_best_fit_pos}$ points around $y=0$ yields the best $\chi^2/n_r={np.round(np.min(chi2_n_pos),4)}$."
s_neg = f"Negative dataset: ${number_of_points_for_best_fit_neg}$ points around $x=B_c^-$ yields the best $\chi^2/n_r={np.round(np.min(chi2_n_neg),4)}$."
display(Latex(s_pos))
display(Latex(s_neg))
Positive dataset: points around yields the best .
Negative dataset: points around yields the best .
Computing and error propagation.
We have a straight line of the form with fitted and along with their uncertainties. We can find the crossing by
Error-propagating this function, we get
(Sometimes, the above equation shows up as Math Processing Error when displayed in a Jupyter notebook on ERDA. However, if you let a Latex renderer render the equation, it displays just fine)
def compute_bc(popt,pcov):
# -b/a= x
a,b = popt
a_sigma = np.sqrt(pcov[0][0])
b_sigma = np.sqrt(pcov[1][1])
Bc = -b/a
Bc_sigma = np.sqrt((b/(a**2))**2 * a_sigma**2 + (-1/a)**2 * b_sigma**2 )
return Bc, Bc_sigma
Below is an animation of how we can choose to fit a line through progressively more points around the area and their corresponding and estimates.
%%capture
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(15,6))
# Background plots
ax1.plot([-1,1],[0,0],"r--",alpha=0.5)
ax2.plot([-1,1],[0,0],"r--",alpha=0.5)
gen_bin_plot(bins_optim,ax=ax1)
gen_bin_plot(bins_optim,ax=ax2)
# Animated plots setup
points1 = ax1.plot([],[],"ro",label="Fit points")[0]
line1 = ax1.plot([],[],"r",label='Fitted line')[0]
points2 = ax2.plot([],[],"ro",label="Fit points")[0]
line2 = ax2.plot([],[],"r",label='Fitted line')[0]
ax1.legend()
ax2.legend()
bc_text1 = ax1.text(-0.6,2.8e-7,"")
zero_crossing1 = ax1.plot([],[],"r--", alpha=0.5)[0]
bc_text2 = ax2.text(-0.6,2.8e-7,"")
zero_crossing2 = ax2.plot([],[],"r--", alpha=0.5)[0]
chi2_text1 = ax1.text(-0.6,2.1e-7,"")
chi2_text2 = ax2.text(-0.6,2.1e-7,"")
ax1.set_title("Fitting to positive dataset.")
ax2.set_title("Fitting to negative dataset.")
def update(N):
N=N+3 # We start at 3 points.
# POSITIVE:
# fit line
popt_pos, pcov_pos =curve_fit(straight_line,
B_pos_bin[indices_pos[:N]],
M_pos_bin[indices_pos[:N]],
p0=[0,0],
sigma=M_pos_bin_sigma[indices_pos[:N]],
absolute_sigma=True)
# compute bc
Bc_pos, Bc_pos_sigma = compute_bc(popt_pos,pcov_pos)
bc_text1.set_text("$B_c^+=${:.5f}T$\pm${:.0E} T".format(Bc_pos,Bc_pos_sigma))
zero_crossing1.set_data([Bc_pos,Bc_pos],[-1,1])
# compute chi2/nr
r_pos = M_pos_bin[indices_pos[:N]] - straight_line(B_pos_bin[indices_pos[:N]], *popt_pos)
chi2_pos = np.sum((r_pos / M_pos_bin_sigma[indices_pos[:N]]) ** 2)
chi2_text1.set_text("$\chi^2/n_r =${:.3f}".format(chi2_pos/N))
line1.set_data(np.linspace(-1,1),straight_line(np.linspace(-1,1),*popt_pos))
points1.set_data(B_pos_bin[indices_pos[:N]],M_pos_bin[indices_pos[:N]])
# NEGATIVE:
# fit line
popt_neg, pcov_neg =curve_fit(straight_line,
B_neg_bin[indices_neg[:N]],
M_neg_bin[indices_neg[:N]],
p0=[0,0],
sigma=M_neg_bin_sigma[indices_neg[:N]])
# compute bc
Bc_neg, Bc_neg_sigma = compute_bc(popt_neg,pcov_neg)
bc_text2.set_text("$B_c^-=${:.5f}T$\pm${:.0E} T".format(Bc_neg,Bc_neg_sigma))
zero_crossing2.set_data([Bc_neg,Bc_neg],[-1,1])
# compute chi2/nr:
r_neg = M_neg_bin[indices_neg[:N]] - straight_line(B_neg_bin[indices_neg[:N]], *popt_neg)
chi2_neg = np.sum((r_neg / M_neg_bin_sigma[indices_neg[:N]]) ** 2)
chi2_text2.set_text("$\chi^2/n_r =${:.3f}".format(chi2_neg/N))
line2.set_data(np.linspace(-1,1),straight_line(np.linspace(-1,1),*popt_neg))
points2.set_data(B_neg_bin[indices_neg[:N]],M_neg_bin[indices_neg[:N]])
fig.suptitle(f"Line fitting to find $B_c$ using ${N}$ points.")
return [line1,points1,bc_text1,zero_crossing1,chi2_text1,
line2,points2,bc_text2,zero_crossing2,chi2_text2]
anim = animation.FuncAnimation(fig,
update,
frames=80,
interval=300,
blit=True,
repeat_delay=0)
anim
We see that the optimal number of points for the best fit is confirmed by the animation. We can now compute and their uncertanties for both datasets using the methods we have already discussed. We find
# Fit the lines using optimal number of points found above.
popt_pos, pcov_pos =curve_fit(straight_line,
B_pos_bin[indices_pos[:number_of_points_for_best_fit_pos]],
M_pos_bin[indices_pos[:number_of_points_for_best_fit_pos]],
p0=[0,0],
sigma=M_pos_bin_sigma[indices_pos[:number_of_points_for_best_fit_pos]])
popt_neg, pcov_neg =curve_fit(straight_line,
B_neg_bin[indices_neg[:number_of_points_for_best_fit_neg]],
M_neg_bin[indices_neg[:number_of_points_for_best_fit_neg]],
p0=[0,0],
sigma=M_neg_bin_sigma[indices_neg[:number_of_points_for_best_fit_neg]])
# Compute Bc and their uncertainties.
Bc_pos, Bc_pos_sigma = compute_bc(popt_pos,pcov_pos)
Bc_neg, Bc_neg_sigma = compute_bc(popt_neg,pcov_neg)
display(Latex("$B_c^+={:.3f}T\pm{:.3f}T$".format(Bc_pos,Bc_pos_sigma)))
display(Latex("$B_c^-={:.3f}T\pm{:.3f}T$".format(Bc_neg,Bc_neg_sigma)))
In case of hysteresis between the two datasets, we expect to be equal to within the combined uncertainty assuming they are normally distributed, we get
# Check that the two measurements of Bc agree with each other (up to the symmetry)
# equivalent to (abs(Bc_pos)-abs(Bc_neg))=0
combined_mu = Bc_pos+Bc_neg
combined_sigma = np.sqrt(Bc_pos_sigma**2 + Bc_neg_sigma**2)
# How many sigmas does the combined_my deviate from the mean?
sigma_from_mean = (combined_mu-0)/combined_sigma
# Assuming normally distributed what is the probability that we would see more extreme data if they agreed?
# is it less than 5%?
p_data_more_extreme_than_combined_mu = (1-norm.cdf(sigma_from_mean))*2 # the factor two is because we want the two-sided probability.
display(Latex("We find that $B_c^\pm$ is "+"${:.2f}$".format(sigma_from_mean)+"$\sigma_{B_c^\pm}$ from 0"+\
" which gives us a ${:.0f}\%$ chance to get a more extreme result (which is more than $5\%$).".format(p_data_more_extreme_than_combined_mu*100)))
We find that is from 0 which gives us a chance to get a more extreme result (which is more than ).
Since is less than we conclude that and agree with each other. This supports our previous finding that we do se hysteresis.
However, we would ideally like to come up with a stronger quantative argument for hysteresis. One way of doing this is by checking the symmetry for all the points.
Attempt to quantitively show hysteresis
Let be a function that describes the positive dataset, and let be a function that describes the negative dataset, then we want to show that for all within the uncertainties.
In order to do this, we must know how to model and , but we do not have a model for the datasets. However, if we look at the graph, it does resemble a sigmoid function, and since the material is ferromagnetic, we might find that the function is not differentiable around , so we will try to model the datasets using a single and two sigmoid functions (splitting at ).
# sigmodial curve
sigmoid = lambda x, *p: p[0] + p[1]* 1/(1+ p[2]*np.exp(-x*p[3]))
def double_sigmoid(x, Bc, *p):
mask = x<=Bc
y = np.zeros(len(x))
# two sigmoids breaking at x=Bc (y=0)
y[mask]= sigmoid(x[mask],*p[:4])
y[~mask]= sigmoid(x[~mask],*p[4:])
return y
maxfev = 50000
p0 = [0,1,1,1, 0,1,1,1]
# fitting double sigmoid model
popt_pos_double, pcov_pos_double = curve_fit(lambda x,*p: double_sigmoid(x,Bc_pos,*p),B_pos_bin,M_pos_bin,p0,sigma=M_pos_bin_sigma, maxfev=maxfev)
popt_neg_double, pcov_neg_double = curve_fit(lambda x,*p: double_sigmoid(x,Bc_neg,*p),B_neg_bin,M_neg_bin,p0,sigma=M_neg_bin_sigma, maxfev=maxfev)
# fitting single sigmoid model
popt_pos_single, pcov_pos_single = curve_fit(sigmoid,B_pos_bin,M_pos_bin,p0[:4],sigma=M_pos_bin_sigma, maxfev=maxfev)
popt_neg_single, pcov_neg_single = curve_fit(sigmoid,B_neg_bin,M_neg_bin,p0[:4],sigma=M_neg_bin_sigma, maxfev=maxfev)
fig, (ax1, ax2) = plt.subplots(1,2,sharex=True, sharey=True, figsize=(12,5))
gen_bin_plot(bins_optim,ax=ax1,alpha=0.3)
gen_bin_plot(bins_optim,ax=ax2,alpha=0.3)
xs = np.linspace(-1,1,1000)
# single sigmoid
ax1.plot(xs,sigmoid(xs,*popt_pos_single),c="tab:blue", label="Single sigmoid fit")
ax1.plot(xs,sigmoid(xs,*popt_neg_single),c="tab:orange", label="Single sigmoid fit")
ax1.plot([-1,1],[0,0],"r--",linewidth=1, alpha=0.5)
ax1.legend()
ax1.set_title("Single sigmoid fitting")
# double sigmoid
ax2.plot(xs,double_sigmoid(xs,Bc_pos,*popt_pos_double),c="tab:blue", label="Double sigmoid fit")
ax2.plot(xs,double_sigmoid(xs,Bc_neg,*popt_neg_double),c="tab:orange", label="Double sigmoid fit")
ax2.plot([-1,1],[0,0],"r--",linewidth=1, alpha=0.5)
ax2.legend()
ax2.set_title("Double sigmoid fitting")
fig.suptitle("Fitting models for the datasets")
plt.show()
We see that the single sigmoid function doesn't appear to capture the data very well the curve appears to be too gentle. The double sigmoid appears to do better, but has a dicontinuity around the split point which is unexpected.
To better understand how well the models fit the data, we can look at the residual plots where the residual is defined as
for model and a dataset .
### residual plot ###
## computing the residuals.
# double
residuals_double_pos = M_pos_bin-double_sigmoid(B_pos_bin,Bc_pos,*popt_pos_double)
residuals_double_normed_pos = residuals_double_pos / M_pos_bin_sigma
residuals_double_neg = M_neg_bin-double_sigmoid(B_neg_bin,Bc_neg,*popt_neg_double)
residuals_double_normed_neg = residuals_double_neg / M_neg_bin_sigma
# single
residuals_single_pos = M_pos_bin-sigmoid(B_pos_bin,*popt_pos_single)
residuals_single_normed_pos = residuals_single_pos / M_pos_bin_sigma
residuals_single_neg = M_neg_bin-sigmoid(B_neg_bin,*popt_neg_single)
residuals_single_normed_neg = residuals_single_neg / M_neg_bin_sigma
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,5))
# single sigmoid
ax1.scatter(B_pos_bin, residuals_single_normed_pos, marker=".", label="Positive Residual")
ax1.scatter(B_neg_bin, residuals_single_normed_neg, marker=".", label="Negative Residual")
ax1.set_title("Residual plot for sigmoid fit.")
ax1.set_xlabel("B [V]")
ax1.set_ylabel("Residual [$\sigma$]")
ax1.legend(loc="lower left")
ax1.set_xlim(-0.8,0.8)
ax1.set_ylim(-10,10)
ax1.grid()
# double sigmoid
ax2.scatter(B_pos_bin, residuals_double_normed_pos, marker=".", label="Positive Residual")
ax2.scatter(B_neg_bin, residuals_double_normed_neg, marker=".", label="Negative Residual")
ax2.set_title("Residual plot for double sigmoid fit.")
ax2.set_xlabel("B [V]")
ax2.set_ylabel("Residual [$\sigma$]")
ax2.legend(loc="lower left")
ax2.set_xlim(-0.8,0.8)
ax2.set_ylim(-10,10)
ax2.grid()
fig.suptitle("Residual Plots")
plt.show()
We see that both models have very high residual errors. Moreover, they appear to not be randomly scattered, and have systematic errors. This suggests that the models we have used for the fits are not correct, and don't properly capture the data.
However, for completeness, we will check the symmetry
fig, (ax1, ax2) = plt.subplots(1,2, sharex=True, sharey=True, figsize=(12,5))
# f(x)+g(-x)
sigmoid_sym = sigmoid(xs,*popt_pos_single)+sigmoid(-xs,*popt_neg_single)
double_sigmoid_sym = double_sigmoid(xs,Bc_pos,*popt_pos_double)+double_sigmoid(-xs,Bc_neg,*popt_neg_double)
ax1.plot(xs, sigmoid_sym, label="$f(x)+g(-x)$")
ax2.plot(xs, double_sigmoid_sym, label="$f(x)+g(-x)$")
ax1.set_title("Symmetry test for sigmoid fit")
ax2.set_title("Symmetry test for double sigmoid fit")
ax1.legend()
ax2.legend()
ax1.set_xlabel("B [T]")
ax1.set_ylabel("~M [V/T]")
ax2.set_xlabel("B [T]")
ax1.set_ylim(-5e-7,5e-7)
plt.ticklabel_format(axis="y", style="sci", scilimits=(0,0))
Visually, both models appear to be approximately symmetric. The dip in the double sigmoid fit is probably due to slight differences in where is located for the negative and positive dataset which puts the split at slightly different places.
We will now try to fit a line to both of these plots and check that the bias is within the uncertainty. However, even if that's the case, it won't actually tell us much since the models don't describe the data very well as seen in the residual plots.
# fit straight lines
p0 = [0,0]
popt_line_single, pcov_line_single = curve_fit(straight_line, xs,sigmoid_sym,p0)
popt_line_double, pcov_line_double = curve_fit(straight_line, xs,double_sigmoid_sym,p0)
single_bias = popt_line_single[1]
single_bias_uncertainty = np.sqrt(pcov_line_single[1][1])
double_bias = popt_line_double[1]
double_bias_uncertainty = np.sqrt(pcov_line_double[1][1])
display(Latex("Single Sigmoid bias $={:.1E} V/T\pm{:.0E} V/T$ which is ${:.2f}\sigma$ away from zero.".format(single_bias,single_bias_uncertainty,single_bias/single_bias_uncertainty)))
display(Latex("Double Sigmoid bias $={:.0E} V/T\pm{:.0E} V/T$ which is ${:.2f}\sigma$ away from zero.".format(double_bias,double_bias_uncertainty,double_bias/double_bias_uncertainty)))
Single Sigmoid bias which is away from zero.
Double Sigmoid bias which is away from zero.
As we saw in the graph, the double sigmoid model describes the data better than the single sigmoid model, however the bias is still greater than away from zero.
However, the uncertainty of the double sigmoid bias is likely overestimated since we didn't use the mean of the two estimates. We didn't do that since we thought it would be circular reasoning to assume symmetry when testing for symmetry. But as mentioned above, neither model is a particular good fit, and both have systematic biases, so this argument doesn't tell us much about if we see Hysteresis.
Another way of modelling the data which we have not done in this assignment is to extend the linaer fit method we used to find , but do so for every point. This way we only assume local linearity.
We will therefore use our previous arguments: The graphs looks qualitatively to exhibit hysteresis, and there is symmetry between the and estimates.
Analysis of the neutral 2010_01_0012
dataset
Finally, we look at the neutral dataset to try to confirm that we do not see hysteresis.
df_neu = pd.read_csv("2010_01_0012.dat",skiprows=14,names=headers,sep=" ")
B_neu = df_neu[B_col]
U_neu = df_neu[U_col]-U0
M_neu = (U_neu)/B_neu
B_neu_bin, B_neu_bin_sigma = rebin(B_neu, bins_optim)
M_neu_bin, M_neu_bin_sigma = rebin(M_neu, bins_optim)
gen_bin_plot(bins_optim)
plt.errorbar(B_neu_bin, M_neu_bin,yerr=M_neu_bin_sigma, xerr=B_neu_bin_sigma, fmt=".", label="Neutral")
plt.legend()
<matplotlib.legend.Legend at 0x7fd10498fad0>
We clearly see that the 2010_01_0012
neutral dataset doesn't line up with hysteresis for either of the other datasets as expected.