
INVESTIGATING SUBEQUIVARIANT LEARNABLE MESH SIMULATORS

L. Fredenslund, P. Jensen

University of Copenhagen

P. Adema∗

University of Amsterdam

ABSTRACT
Learning physical simulators has become a topic of some fo-
cus within deep learning, with many current approaches being
based on Graph Neural Networks (GNNs). Two papers on this
topic are Pfaff et al. [1], proposing MeshGraphNets (MGNs),
models capable of accurately replicating mesh-based simula-
tions, and Han et al. [2], proposing a learned rigid-body sim-
ulator augmented with the physical prior of rotational sube-
quivariance. We propose two augmentations of MGN using
the subequivariant transform from Han et al. [2]. Training and
evaluating the modified models at a smaller scale shows that
wrapping every non-linear element with a subequivariance
transform can enable both accurate predictions and general-
ization under rotation while increasing data efficiency, at the
cost of computational efficiency. Our results show a promis-
ing direction for future research on models of larger scales,
serving as a compelling proof of concept for subequivariant
mesh simulation using GNNs.

Index Terms— GNN, simulation, mesh, equivariance

1. INTRODUCTION

In this paper, we combine the works of Han et al. [2] and
Pfaff et al. [1]. Both papers contribute to Graph Neural
Network-based physics simulators. Pfaff et al. [1] introduce
MeshGraphNets (MGNs) that model a 2D mesh space along-
side the 3D world coordinates. This addition lets the network
distinguish points close in both world-space and mesh-space
from those only close in world-space, leading to a more re-
alistic simulation. While MGNs are translation equivariant,
they are not equivariant under rotation, which can hinder per-
formance in systems that exhibit rotational symmetry (such as
realistic physics). There are fully equivariant models such as
GMN [3] and EGNN [4], but they are not suitable for prob-
lems where the symmetry is partially broken, such as with the
introduction of a gravitational field. Han et al. [2] proposes a
solution to this by introducing a subequivariant model which
is rotationally equivariant around only the axis of symmetry.

We extend the model from Pfaff et al. [1] with a version
of the subequivariance transform from Han et al. [2], and
investigate the empirical performance of the extension under
orthogonal transformations.

∗Work done while at the University of Copenhagen

2. METHODS

2.1. MGN framework overview

MGN simulates a mesh at time t by encoding it into a graph
M t = (V,E), where nodes V are connected by edges E.
Each node i ∈ V includes its current and previous world posi-
tion, xt

i and xt−1
i ∈ R3, respectively, its current mesh position

ut
i ∈ R2 and a one-hot vector ni, denoting node type.

2.1.1. Encoder

The original inputs are transformed into the following node
and edge features: node features consist of the node type, ni,

and the velocity vector, qt
i =

xt
i−xt−1

i

dt . Edge features include
the relative world and mesh coordinates, along with their Eu-
clidean norms: xij = xt

i − xt
j , uij = ut

i − ut
j , ∥xij∥2,

and ∥uij∥2, respectively. Edge features are made translation
invariant by transforming the absolute positions into relative
positions. This transformation allows the model’s output to
be translation equivariant, given that the absolute positions
are kept track of separately.

In the encoder, two multilayer perceptrons (MLPs), σV

for nodes and σE for edges, encode these node and edge fea-
tures into separate higher-dimensional latent spaces.

2.1.2. Processor

The processor consists of K identical message passing
blocks; each block first updates the edges and then uses
the updated edges to update the nodes as follows:

e′ij ← fE(eij ,vi,vj), v′
i ← fV (vi,

∑
j∈N (i)

e′ij), (1)

Where N (i) denotes the neighbourhood of node i, and fE

and fN are MLPs with output dimension dL.

2.1.3. Decoder

The decoder uses an MLP δV , to predict the change in ac-
celeration, denoted pt

i, from the latent node features v′
i. The

world position of each node at t + 1 is then updated using a
second-order forward-Euler integrator with dt = 1

xt+1
i = pt

i + 2xt
i − xt−1

i = xt
i + qt

i + pt
i (2)



Fig. 1. Illustration of the methods mentioned in this paper: firstly, the invariance transform from Han et al. [2], secondly, a
sketch of the MGN [1] architecture, thirdly, the full-model subequivariance augmentation from Sec. 2.3 and finally the layer-
wise subequivariance transform from Sec. 2.4.

This update allows MGN to be translation equivariant, pro-
vided that the current and previous world positions are trans-
lated equally when calculating the current velocity.

2.2. Subequivariance

In this section, we define the notion of subequivariance,
specifically O(3)g⃗-equivariance, explain its relevance in
physics simulation models, and show how it can be achieved
in models like MGNs. Equivariance under some transfor-
mations is desirable to inductively exploit symmetries in the
physical problem the model is learning. Equivariance en-
courages the model to learn the dynamics not covered by the
symmetries, improving generalization and increasing perfor-
mance. Most problems are not fully E(3)-equivariant, but a
large group of dynamics problems are equivariant to rotation
around the axis of an external force. For an external force g⃗,
we refer to such symmetry as O(3)g⃗-equivariance, or simply
subequivariance.

Formally, E(3) refers to the group of all rotation/reflection
matrices and translation vectors in 3D space, defined as

E(3) = {(R, t) | R ∈ O(3), t ∈ R3} (3)

with t being translation vectors and R being rotation/reflection
matrices. O(3) represents the orthogonal group in 3 dimen-
sions, defined by

O(3) := {R ∈ R3×3|RTR = I}. (4)

Using the definition presented in Han et al. [2], a function
f : R3×m × Rn → R3 ×m′ is E(3)-equivariant, if for any
transformation g ∈ E(3), we have that f(g · Z⃗,h) = g ·
f(Z⃗,h), and f is invariant, if f(g · Z⃗,h) = f(Z⃗,h), ∀g ∈

E(3). Here, Z⃗ ∈ R3×m is a matrix of m column-stacked
geometric vectors in 3D space. The → denotes geometric
data. h ∈ Rn is a vector of non-geometric features. Han et
al. [2] defines O(3)g⃗-equivariance by restricting the group of
orthogonal transformations to:

Og⃗(3) := {R ∈ O(3) | Rg⃗ = g⃗} (5)

Where transformations preserve the fixed direction of g⃗ in
their implementation by appending, Han et al. [2] achieves
this by augmenting Z⃗ with g⃗ and performing a multichannel
scalarization by taking the inner product

[
Z⃗, g⃗

]⊤ [
Z⃗, g⃗

]
∈

Rm+1×m+1. This inner product is O(3)g⃗-invariant, since the
orientation of Z⃗ relative to g⃗ is only preserved under O(3)g⃗
transformations on Z⃗. Han et al. [2] supplies the scalarized
geometric input to an MLP, making it Og⃗(3)-invariant. The
MLP’s output is then projected back onto

[
Z⃗, g⃗

]
, yielding a

scalarized form that is Og⃗(3)-equivariant:

fg⃗(Z⃗, h) = [Z⃗, g⃗]Vg⃗, s.t. Vg⃗ = σ
(
[Z⃗, g⃗]⊤[Z⃗, g⃗],h

)
,

(6)
where Vg⃗ is an MLP with output dimension Rm+1×m′

. Fi-
nally, to make MGNs subequivariant, the function fg⃗ should
be used in place of any MLP that receives input features sensi-
tive to E(3) operations, such as the initial encoders mentioned
in Sec. 2.1.1.

2.3. Full-model subequivariance

Unlike the model proposed by Han et al. [2], MGN has a
homogeneous latent space for message passing, with no ex-
plicit Z⃗,h to transform. Despite this, a simple method for



making MGN rotation subequivariant using the transforma-
tion described in Sec. 2.2 would be to treat the entire model
as a single non-linear function and wrap it with the transform,
as illustrated in Fig. 1. However, performing the transfor-
mation while treating the node-axis as m would result in a
model input of variable size per node: the scalarization would
output an (m + 1) × (m + 1) matrix, meaning that models
trained this way would be unable to generalize to different
node counts. As such, the only option is to treat the singular
set of relative coordinates of the current node or edge as the
m-dimension, setting m = 1. This has the side-effect of all
relative coordinates being scalarized independently, meaning
the model cannot determine the relative angles between nodes
during message-passing, severely hindering its effectiveness.

2.4. Layer-wise subequivariance

Alternatively, the MGN model can be modified to split its
latent space into an explicit Z⃗,h, allowing every non-linear
layer (the MLPs in the encoder, processor and decoder) to be
wrapped individually (see Fig. 1). This allows the message-
passing layers to have scalarization transforms spanning mul-
tiple nodes or edges: an edge update step scalarizes its two
neighbour nodes together, informing it of the relative angles
between it and its neighbour nodes. In practice, with a latent
dimension of 64, we split the latent with m = 16, meaning
48 of the 64 latent channels were considered positional (and
were transformed), while the remaining 16 were considered
non-positional.

3. EXPERIMENTAL SETUP

We train 3 model variants: a baseline model similar to Pfaff
et al. [1], a full-model subequivariant extension, and a layer-
wise subequivariant extension to the baseline model. In each
variant, we reduce the latent size from 128 to 64 and the num-
ber of message passing blocks from 15 to 10 due to computa-
tional budget limitations. Pfaff et al. [1] found that additional
message passing blocks improves performance at the cost of
computational budget.

To further limit the computational cost, we train the base
and the full-model variation for 5 · 105 steps and the layer-
wise subequivariant variation for 2 · 105 steps as opposed to
107 steps in Pfaff et al. [1].

We use the sphere simple dataset which does not use dy-
namic remeshing to further reduce the computational cost.
The sphere datasets were the only datasets from Pfaff et al.
[1] which feature a limited rotational symmetry making our
extensions suitable, but Pfaff et al. [1] did not publish the
code for generating world edges for the sphere datasets. Due
to time constraints, we were unable to reimplement those.
We therefore treat the sphere simple dataset as the flag simple
dataset in which there is no world contact between objects.

These limitations have consequences for the absolute re-
sults. The training data encodes interactions between the
sphere and the flag, but the models get no information about
how the interactions should occur. Moreover, we are us-
ing smaller models and training them for significantly fewer
steps. We will therefore principally look at the relative change
due to equivariant rotations around the gravitational axis.

4. RESULTS

We define the equivariant MSE for some MODEL as

MSEeqv =
1

N

N∑
i

∥MODEL(x⃗t)−R−1MODEL(Rx⃗t)∥22,

(7)
where R ∈ R3×3 is some rotation matrix around the grav-

ity axis (in our case 45 deg clockwise), and R−1 is the inverse
of that rotation. x⃗i ∈ R3×N is the world space coordinates
forN nodes at time t. It measures how inconsistent the model
is in its predictions when the coordinates are rotated around
an equivariant axis. In Table 1, we see that the base model has
a relatively high MSEeqv , while the full-model subequivari-
ance extension improves the equivariance considerably and
is close to the numerical precision in the early steps indi-
cated by Ground Truth. The layer-wise subequivariance ex-
tension achieves a smaller but still significant improvement in
MSEeqv .

As the simulation steps are rolled out, the error accumu-
lates faster than the lower bound indicated by Ground Truth,
but the subequivariant extensions retain a better MSEeqv

compared to the baseline. In Table 2, we report the MSE
between the predicted and ground truth positions. In all
cases, the error accumulates with time, but there is little dif-
ference in the MSEabs between the rotated and non-rotated
coordinates. This lack of difference indicates that the error
is dominated by the models’ ability to learn the dynam-
ics, not rotational equivariance. The only exception is the
baseline, which has no mitigation and a higher MSEabs

when rotated during the initial steps, indicating that sube-
quivariance can benefit sufficiently capable models. The
baseline and layer-wise subequivariance extension generally
have lower MSEabs compared to the full-model subequiv-
ariance, indicating a tradeoff between MSEabs and MSEeqv .
The layer-wise subequivariance is also over 6 times slower
than the baseline and full-model subequivariance, running at
5.5 training iterations/s on a Nvidia T4 compared to 35 it/s
for the other two variants.

In Fig 2, we see predictions for the different model vari-
ants at step 50 and the ground truth for both non-rotated in-
puts and inputs rotated by 45 deg around the gravity axis. The
baseline model significantly alters its prediction when the in-
puts are rotated, whereas both subequivariance extensions re-
main consistent with their predictions under rotation. Further-
more, it should be noted that full-model subequivariance pre-



MSEeqv Ground Truth Base Model Subeqv. Layer Subeqv.
Step 5 (2.6± 0.7) · 10−16 (3± 1) · 10−5 (8± 2) · 10−15 (2.3± 0.9) · 10−6

Step 500 (2± 1) · 10−16 (3± 2) · 10−2 (3± 6) · 10−5 (10± 3) · 10−4

Table 1. The subequivariant MSE between predicted positions and predicted positions in rotated coordinate system rotated
back. The Ground Truth represents the numerical precision of rotating and rotating back, and works as a lower bound for MSE.
We use a rotation of 45 deg clockwise. ± indicates 1 standard deviation.

MSEabs Base Model Subeqv. Layer Subeqv.
Step 5 (0.4± 0.2) · 10−5 (1± 1) · 10−5 (0.2± 0.3) · 10−5

Step 5 Rot. (2.2± 0.5) · 10−5 (1± 1) · 10−5 (0.4± 0.6) · 10−5

Step 500 (6± 4) · 10−2 (10± 4) · 10−2 (4± 4) · 10−2

Step 500 Rot. (6± 4) · 10−2 (10± 4) · 10−2 (4± 4) · 10−2

Table 2. The MSE between predicted positions and ground truth positions. Rot. indicates the inputs have been rotated by
45 deg clockwise. ± indicates 1 standard deviation.

Fig. 2. Comparison of simulation at step 50 for different
model variants. Rot. indicates that the input has been rotated
by 45 deg. The spheres are incorrectly handled in the models
due to missing world edges.

diction is generally static: being unable to observe relative an-
gles, it always predicts a velocity around zero. Qualitatively,
the layer-wise extension is more consistent with the ground
truth after rotation, whereas the full-model extension is more
self-consistent. Finally, the baseline is neither self-consistent
nor consistent with the ground truth after rotation.

5. DISCUSSION

We show that applying the subequivariant transform from
SOMP [2] to the GraphMeshNet [1] model can significantly
increase the model’s capability to generalize across rotations
around the equivariant axis. Table 1 and Fig. 2 show that
the base model overfits on the angles present in the training
data, while the subequivariant modifications remain generally
consistent with their predictions after rotation. This effect is
most visible in the early steps of the simulation rollout, where
even the full-model equivariance outperforms the base model
in MSEabs. Furthermore, although full-model subequivari-
ance decreases prediction accuracy for non-rotated scenes,

Table 2 shows that applying the subequivariant transform to
every individual layer results in a model with equal, if not
better, predictive performance than the base model, even for
non-rotated scenes. The ability of the layer-wise subequiv-
ariant model to observe only relative angles allows for better
accuracy, generalization and data efficiency (using only 40%
of the training epochs as the other models) at the price of
being six times slower.

Future research directions might include re-implementing
more of the MGN model with the subequivariant transforms
(as features such as world edges were not included in the code
sample from the paper), training full-scale models to investi-
gate whether layer-wise subequivariance also improves non-
rotated performance for larger models, and attempting to find
a more efficient method for attaining layer-wise subequivari-
ance.

For replicability, all of our training and visualization code
is available in a GitHub repository. During this research,
we used approximately 110 hours on an NVIDIA T4 GPU,
where the final set of models took 18 hours to train on the
sphere simple dataset.

6. CONCLUSION

Generalization is necessary for scalable physical simulation,
and adding rotation subequivariance to the mesh simulator
from MGN is a step towards a more practical GNN-based
simulator. At the smaller scale this research has operated at,
this addition increases performance under rotations and data
efficiency at the price of computation efficiency. Examining
these tradeoffs more closely or at a larger scale would be a
logical next step for future research.

https://github.com/lunaluxie/subequivariant-meshgraphnets


7. COMPLIANCE WITH ETHICAL STANDARDS

This is a theoretical machine learning study for which no eth-
ical approval was required. We do not expect there to be a
possible harmful dual use case for the models trained or de-
scribed.

8. ACKNOWLEDGMENTS

We would like to thank our Teaching Assistant Kiril Klein for
their help in understanding the research assignment, as well
as our lecturers for their clear explanations of much of the
theory behind these models.

For conducting this study, 50$ of Google Cloud Credits
were provided as an educational grant, and were used to run
the experiments. The authors have no relevant financial or
non-financial interests to disclose.

9. REFERENCES

[1] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter W. Battaglia, “Learning mesh-based simulation
with graph networks,” 2021.

[2] Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li,
Joshua B. Tenenbaum, and Chuang Gan, “Learning
physical dynamics with subequivariant graph neural net-
works,” 2022.

[3] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu,
Fuchun Sun, and Junzhou Huang, “Equivariant graph
mechanics networks with constraints,” 2022.

[4] Victor Garcia Satorras, Emiel Hoogeboom, and Max
Welling, “E(n) equivariant graph neural networks,” 2022.


	 Introduction
	 Methods
	 MGN framework overview
	 Encoder
	 Processor
	 Decoder

	 Subequivariance
	 Full-model subequivariance
	 Layer-wise subequivariance

	 Experimental Setup
	 Results
	 Discussion
	 Conclusion
	 Compliance with ethical standards
	 Acknowledgments
	 References

